Imaginary quadratic function fields with ideal class group of prime exponent
نویسندگان
چکیده
منابع مشابه
Fast ideal cubing in imaginary quadratic number and function fields
We present algorithms for computing the cube of an ideal in an imaginary quadratic number field or function field. In addition to a version that computes a non-reduced output, we present a variation based on Shanks’ NUCOMP algorithm that computes a reduced output and keeps the sizes of the intermediate operands small. Extensive numerical results are included demonstrating that in many cases our...
متن کاملClass numbers of ray class fields of imaginary quadratic fields
Let K be an imaginary quadratic field with class number one and let p ⊂ OK be a degree one prime ideal of norm p not dividing 6dK . In this paper we generalize an algorithm of Schoof to compute the class numbers of ray class fields Kp heuristically. We achieve this by using elliptic units analytically constructed by Stark and the Galois action on them given by Shimura’s reciprocity law. We have...
متن کاملImaginary quadratic orders with given prime factor of class number
Abelian class group Cl(D) of imaginary quadratic order with odd squarefree discriminant D is used in public key cryptosystems, based on discrete logarithm problem in class group and in cryptosystems, based on isogenies of elliptic curves. Discrete logarithm problem in Cl(D) is hard if #Cl(D) is prime or has large prime divisor. But no algorithms for generating such D are known. We propose proba...
متن کاملClass numbers of imaginary quadratic fields
The classical class number problem of Gauss asks for a classification of all imaginary quadratic fields with a given class number N . The first complete results were for N = 1 by Heegner, Baker, and Stark. After the work of Goldfeld and Gross-Zagier, the task was a finite decision problem for any N . Indeed, after Oesterlé handled N = 3, in 1985 Serre wrote, “No doubt the same method will work ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 2017
ISSN: 0022-314X
DOI: 10.1016/j.jnt.2016.09.021