Imaginary quadratic function fields with ideal class group of prime exponent

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast ideal cubing in imaginary quadratic number and function fields

We present algorithms for computing the cube of an ideal in an imaginary quadratic number field or function field. In addition to a version that computes a non-reduced output, we present a variation based on Shanks’ NUCOMP algorithm that computes a reduced output and keeps the sizes of the intermediate operands small. Extensive numerical results are included demonstrating that in many cases our...

متن کامل

Class numbers of ray class fields of imaginary quadratic fields

Let K be an imaginary quadratic field with class number one and let p ⊂ OK be a degree one prime ideal of norm p not dividing 6dK . In this paper we generalize an algorithm of Schoof to compute the class numbers of ray class fields Kp heuristically. We achieve this by using elliptic units analytically constructed by Stark and the Galois action on them given by Shimura’s reciprocity law. We have...

متن کامل

Imaginary quadratic orders with given prime factor of class number

Abelian class group Cl(D) of imaginary quadratic order with odd squarefree discriminant D is used in public key cryptosystems, based on discrete logarithm problem in class group and in cryptosystems, based on isogenies of elliptic curves. Discrete logarithm problem in Cl(D) is hard if #Cl(D) is prime or has large prime divisor. But no algorithms for generating such D are known. We propose proba...

متن کامل

Class numbers of imaginary quadratic fields

The classical class number problem of Gauss asks for a classification of all imaginary quadratic fields with a given class number N . The first complete results were for N = 1 by Heegner, Baker, and Stark. After the work of Goldfeld and Gross-Zagier, the task was a finite decision problem for any N . Indeed, after Oesterlé handled N = 3, in 1985 Serre wrote, “No doubt the same method will work ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2017

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2016.09.021